

This article was downloaded by:

On: 25 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Selectivity Coefficients for $Zn(CN)_4^{2-}$, $Cd(CN)_4^{2-}$, and $Hg(CN)_4^{2-}$ from Continuous Foam Fractionation with a Quaternary Ammonium Surfactant

Tomasz Gendolla^a; Witold A. Charewicz^a

^a INSTITUTE OF INORGANIC CHEMISTRY AND METALLURGY OF RARE ELEMENTS,
TECHNICAL UNIVERSITY OF WROCŁAW, WROCŁAW, POLAND

To cite this Article Gendolla, Tomasz and Charewicz, Witold A.(1979) 'Selectivity Coefficients for $Zn(CN)_4^{2-}$, $Cd(CN)_4^{2-}$, and $Hg(CN)_4^{2-}$ from Continuous Foam Fractionation with a Quaternary Ammonium Surfactant', *Separation Science and Technology*, 14: 7, 659 — 662

To link to this Article: DOI: 10.1080/01496397908057162

URL: <http://dx.doi.org/10.1080/01496397908057162>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NOTE

Selectivity Coefficients for $\text{Zn}(\text{CN})_4^{2-}$, $\text{Cd}(\text{CN})_4^{2-}$, and $\text{Hg}(\text{CN})_4^{2-}$ from Continuous Foam Fractionation with a Quaternary Ammonium Surfactant

TOMASZ GENDOLLA and WITOLD A. CHAREWICZ

INSTITUTE OF INORGANIC CHEMISTRY AND METALLURGY OF RARE ELEMENTS
TECHNICAL UNIVERSITY OF WROCŁAW
50-370 WROCŁAW, POLAND

Abstract

An experimental study is presented on the continuous flow, foam fractionation of cyanide complex anions. $\text{Zn}(\text{CN})_4^{2-}$, $\text{Cd}(\text{CN})_4^{2-}$, and $\text{Hg}(\text{CN})_4^{2-}$ form 7.5×10^{-6} to $1.5 \times 10^{-5} \text{ M}$ aqueous solutions with the quaternary ammonium surfactant, hexadecyltrimethylammonium iodide. The selectivity coefficients were determined for $\text{Zn}(\text{CN})_4^{2-}$ vs I^- equal to 8.86, for $\text{Cd}(\text{CN})_4^{2-}$ vs I^- equal to 21.79 and for $\text{Hg}(\text{CN})_4^{2-}$ vs I^- equal to 25.12. The surfactant ion-exchange reaction with the studied complex ions was also suggested.

INTRODUCTION

The selectivity of cationic surfactants for anions has been determined in several foam fractionation investigations including Cl^- , Br^- , I^- , CN^- , SCN^- , NO_2^- , NO_3^- , ClO_3^- , BrO_3^- , $\text{S}_2\text{O}_3^{2-}$, CrO_4^{2-} , $\text{Au}(\text{CN})_2^-$, and $\text{Ag}(\text{CN})_2^-$ ions (1-6). These investigations include some attempts to predict the selectivity for the anions on the basis of the thermodynamic properties of the hydrated anions (7-11), but despite the small number of experimental data the more general thermodynamic criterion for selective action of a cationic surfactant has not been formulated. Especially limited data are reported on foam fractionation of complex anions.

The objective of this investigation, as a part of a research project on selective foam fractionation of complex cyanide anions of transition metals, was the experimental determination of selectivity coefficients for

$\text{Zn}(\text{CN})_4^{2-}$, $\text{Cd}(\text{CN})_4^{2-}$, and $\text{Hg}(\text{CN})_4^{2-}$ vs I^- with a quaternary ammonium salt.

EXPERIMENTAL

The previously described (6) foam fractionation column and the experimental procedure were used with a nitrogen flow rate of $17 \text{ cm}^3/\text{min}$ and a temperature held at $294 \pm 1.5^\circ\text{K}$. The surfactant, 99.5% hexadecyltrimethylammonium iodide, was used as a 0.02 M standard solution in analytical grade ethanol. The gamma radioactive isotopes ^{65}Zn , ^{109}Cd , ^{131}I , and ^{203}Hg were used either carrier free (^{109}Cd , ^{131}I) or of sufficiently high specific activity to neglect the effect of carrier concentration (0.9 Ci/g for ^{65}Zn and 1.2 Ci/g for ^{203}Hg).

The feed concentrations of cyanide complex anions of Zn(II), Cd(II), and Hg(II) ranged from 0.75 to $1.5 \times 10^{-5} \text{ M}$, and the surfactant concentrations varied from 1.5 to $3.0 \times 10^{-5} \text{ M}$. These concentrations for potassium cyanide and potassium hydroxide were kept constant and equal to 5.0×10^{-2} and $1.0 \times 10^{-3} \text{ M}$, respectively.

RESULTS AND DISCUSSION

The selectivity coefficients (K') were defined according to the original approach to the selectivity of foam fractionation first presented by Grieves (2, 3), where a cationic surfactant adsorbed at solution-air bubble interfaces has been modeled as a soluble ion exchanger.

A total of 63 steady-state, single equilibrium foam fractionation experiments were conducted with $\text{Zn}(\text{CN})_4^{2-}$, $\text{Cd}(\text{CN})_4^{2-}$, and $\text{Hg}(\text{CN})_4^{2-}$ anions, using the cationic surfactant hexadecyltrimethylammonium iodide.

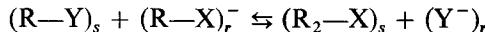
The experimental data points were then treated according to the standard statistical procedure (5, 6). The selectivity coefficients were found equal to 8.86, 21.79, and 25.12 for $\text{Zn}(\text{CN})_4^{2-}$, $\text{Cd}(\text{CN})_4^{2-}$, and $\text{Hg}(\text{CN})_4^{2-}$, respectively. The 95% confidence limits for selectivity coefficients are as follows:

$$\text{Zn}(\text{CN})_4^{2-}: K' = 8.86 \pm 2.086 \times 0.3080 = 8.22 - 9.50$$

$$\text{Cd}(\text{CN})_4^{2-}: K' = 21.79 \pm 2.086 \times 0.5623 = 20.62 - 22.96$$

$$\text{Hg}(\text{CN})_4^{2-}: K' = 25.12 \pm 2.086 \times 0.6416 = 23.78 - 26.45$$

For the total of 21 points for each complex anion, the correlation coefficients, r , were 0.83, 0.91, and 0.91 for $\text{Zn}(\text{CN})_4^{2-}$, $\text{Cd}(\text{CN})_4^{2-}$, and


$\text{Hg}(\text{CN})_4^{2-}$, respectively. From the above data and according to the applied model, it appears that the selectivity coefficient for the anions studied is defined by

$$K' = (c_i - c_r)b_r/(b_i - b_r)c_r$$

where c is the concentration of the complex anion, b is the concentration of the iodide anion, and subscripts i and r refer to initial and final concentrations, respectively.

CONCLUSIONS

From continuous, single equilibrium stage foam fractionation experiments with a strongly basic, quaternary ammonium surfactant acting as a soluble ion exchanger, the ion-exchange mechanism for $\text{Zn}(\text{CN})_4^{2-}$, $\text{Cd}(\text{CN})_4^{2-}$, and $\text{Hg}(\text{CN})_4^{2-}$ complex anions was recognized as

where R describes the surfactant cation, X and Y are the complex anion and iodide anion, respectively, and s and r refer to bubble surface and final bulk solution, respectively. This mechanism is similar to that determined for chromate and thiosulfate anions (5).

The selectivity coefficients for $\text{Zn}(\text{CN})_4^{2-}$, $\text{Cd}(\text{CN})_4^{2-}$, and $\text{Hg}(\text{CN})_4^{2-}$ vs I^- were 8.86, 21.79, and 25.12, respectively. It appears from the above data that the affinity of the complex anions studied to the hexadecyltrimethylammonium iodide follows the order $\text{Hg}(\text{CN})_4^{2-} > \text{Cd}(\text{CN})_4^{2-} > \text{Zn}(\text{CN})_4^{2-}$.

A similar trend was observed in batch-type foam fractionation studies with a quaternary ammonium salt (4).

REFERENCES

1. K. Shinoda and M. Fujihira, *Adv. Chem. Ser.*, **79**, 198 (1968).
2. R. B. Grieves, D. Bhattacharyya, and P. J. W. The, *Can. J. Chem. Eng.*, **51**, 173 (1973).
3. R. B. Grieves and P. J. W. The, *J. Inorg. Nucl. Chem.*, **36**, 1391 (1974).
4. W. Walkowiak and R. B. Grieves, *Ibid.*, **38**, 1351 (1976).
5. R. B. Grieves, R. L. Drahushuk, W. Walkowiak, and D. Bhattacharyya, *Sep. Sci.*, **11**, 241 (1976).
6. W. Walkowiak and Z. Rudnik, *Sep. Sci. Technol.*, **13**(2), 127 (1978).
7. W. Charewicz, *Selective Ion Flotation* (Monograph No. 10), Scientific Papers of the Institute of Inorganic Chemistry and Metallurgy of Rare Elements, Wrocław, 1975.

8. R. B. Grieves and D. Bhattacharyya, *Anal. Lett.*, **4**, 603 (1971).
9. W. Charewicz and W. Walkowiak, *Sep. Sci.*, **7**, 631 (1972).
10. P. Moore and C. R. Phillips, *Ibid.*, **9**, 325 (1974).
11. R. B. Grieves, W. Charewicz, and P. J. W. The, *Ibid.*, **10**, 77 (1975).

Received by editor January 10, 1979